
Verifying Hybrid Systems Modeled as Timed
Automata: A Case Study?

Presented at HART '97, Grenoble, France, March 26-28, 1997

Myla Archer and Constance Heitmeyer

Code 5546, Naval Research Laboratory, Washington, DC 20375
farcher, heitmeyerg@itd.nrl.navy.mil

Abstract. Verifying properties of hybrid systems can be highly com-
plex. To reduce the e�ort required to produce a correct proof, the use of
mechanical veri�cation techniques is promising. Recently, we extended
a mechanical veri�cation system, originally developed to reason about
deterministic real-time automata, to verify properties of hybrid systems.
To evaluate our approach, we applied our extended proof system to a
solution, based on the Lynch-Vaandrager timed automata model, of the
Steam Boiler Controller problem, a hybrid systems benchmark. This pa-
per reviews our mechanical veri�cation system, which builds on SRI's
Prototype Veri�cation System (PVS), and describes the features we
added to handle hybrid systems. It also discusses some errors we de-
tected in applying our system to the benchmark problem. We conclude
with a summary of insights we acquired in using our system to specify
and verify hybrid systems.

1 Introduction

Researchers have proposed many innovative formal methods for developing real-
time systems [9]. Such methods can give system developers and customers greater
con�dence that real-time systems satisfy their requirements, especially their crit-
ical requirements. However, applying formal methods to practical systems re-
quires the solution of several challenging problems, e.g., how to make formal
descriptions and formal proofs understandable to developers and how to design
software tools in support of formal methods that are usable by developers.

We are building a mechanized system for specifying and reasoning about
real-time systems that is designed to address these challenging problems. Our
approach is to build formal reasoning tools that are customized for specifying
and verifying systems represented in terms of a speci�c mathematical model.
In [2], we describe how we are using the mechanical proof system PVS [18, 19]
to support formal speci�cation and veri�cation of systems modeled as Lynch-
Vaandrager timed automata [15, 14]. Reference [2] also presents the results of
a case study in which we applied our method to prove invariant properties of a
solution to the Generalized Railroad Crossing (GRC) problem [7].

Our system provides mechanical assistance that allows humans to specify
and reason about real-time systems in a direct manner. To specify a particular
timed automaton, the user �lls in a template provided by our system. Then, he
or she uses our system, a version of PVS augmented with a set of specialized
PVS proof strategies, to verify properties of the automaton. Use of our system for

? This work is funded by the O�ce of Naval Research. URLs for the authors are
http://www.itd.nrl.navy.mil/ITD/5540/personnel/farcher, heitmeyerg.html

1

speci�cation and veri�cation is usually quite straightforward because our system
provides both a structure and a set of specialized theories useful in constructing
timed automata models and proving properties about them. By focusing on a
particular mathematical model|the timed automata model|our system allows
a user to reason within a specialized mathematical framework. The user need
not master the base logic and the complete user interface of the underlying proof
system, PVS.

The results of our initial study proved encouraging. All of the hand proofs
of invariant properties in the GRC solution were translated into corresponding
PVS proofs with a very similar structure. Moreover, most of the PVS proofs
could be done using our specialized strategies alone. Neither the time required
to enter the speci�cations using our template nor the time required to check the
proofs of state invariants was excessive.

While our initial study only involved deterministic automata, we recently
demonstrated that the same approach could be applied to hybrid automata,
where the e�ects of time passage and other events can be nondeterministic. To
study the utility of our proof techniques for verifying hybrid systems, we applied
them to a solution of the Steam Boiler Controller problem described in [12]. In
verifying this application, we investigated the following issues:

{ How should nondeterminism be modeled?
{ Is it practical to use an automatic theorem prover to reason about nonlinear
real arithmetic?

{ Can the timed automata template and proof strategies developed in our
earlier case study be extended to handle the more general problem of hybrid
automata?

{ How suitable is PVS for verifying properties of hybrid systems?

In verifying the solution in [12], we detected several errors. While most of these
errors are minor and easily �xed, at least two of the errors are errors in reasoning,
and their correction is nontrivial.

Like other approaches to verifying real-time systems, such as SMV [16, 5],
HyTech [10], and COSPAN [11], our approach is based on a formal automata
model. Moreover, like these other approaches, our methods can be used to prove
properties of particular automata and, like COSPAN, to prove simulations be-
tween automata.1 However, our approach is di�erent from other approaches in
several ways. First, the properties we prove are expressed in a standard logic
with universal and existential quanti�cation. This is in contrast to most other
approaches, where the properties to be proved are expressed either in a temporal
logic, such as CTL or Ictl, or in terms of automata. By using standard notations
and standard logics and by providing templates for developing speci�cations, we
largely eliminate the need for the special notations, logics, etc., required by other
veri�cation systems. Second, unlike other automata-based methods, the genera-
tion of proofs in our method is not completely automatic. Rather, our method
uses a mechanical proof system to check the validity of hand proofs that use
deductive reasoning.

1 We have designed support for verifying simulation proofs, but implementation of this
support requires some improvements to PVS.

2

Interaction with an automatic proof system does demand a higher level of
sophistication from the user. But by supporting reasoning about automata at a
high level of abstraction, we can prove more powerful results than is possible with
tools requiring more concrete descriptions of automata. Moreover, our approach
avoids the state explosion problem inherent in other automata-based approaches
and also provides considerable feedback when an error is detected. Such feedback
is extremely useful in correcting errors.

Section 2 reviews the timed automata model, PVS, and the template and
tools we developed in our earlier veri�cation of the GRC. Section 3 introduces
the Steam Boiler Controller problem, presents the main hybrid automaton speci-
�ed in [12], and discusses the techniques we used to adapt our template to proving
properties of hybrid automata. Section 4 presents our major results|the errors
we detected in applying our system to the Boiler Controller problem and the
time and e�ort we needed to adapt and apply our methods. Section 5 presents
an example of a hand proof and the corresponding PVS proof for a state invari-
ant whose proof involves both nondeterminism and nonlinear real arithmetic.
Section 6 presents some conclusions about the usefulness of our methods for
verifying hybrid automata.

2 Background

2.1 The Timed Automata Model

The formal model used in the speci�cation of the Boiler Controller problem and
its solution [12] represents both the computer system controller and its envi-
ronment as Lynch-Vaandrager timed automata. A timed automaton is a very
general automaton, i.e., a labeled transition system. It need not be �nite-state:
for example, the state can contain real-valued information, such as the current
time, the boiler's water level, and the boiler's steam rate. This makes timed
automata suitable for modeling not only computer systems but also real-world
quantities, such as water levels and steam rates. The timed automata model
describes a system as a set of timed automata, interacting by means of common
actions. In the Boiler Controller solution presented in [12], separate timed au-
tomata represent the boiler and the controller; the common actions are sensors
reporting the water level, steam rate, and number of active pumps in the boiler,
and actuators controlling whether to stop the boiler and when the next sensor
action is scheduled. The de�nition of timed automata below, which is based on
the de�nitions in [8, 7], was used in our earlier case study [2]. It is a special case
of Lynch-Vaandrager timed automata, which requires the next-state relation,
steps(A), to be a function. How to modify the de�nition to handle the nonde-
terminism inherent in hybrid automata was one of the issues addressed in our
current study.

A timed automaton A consists of �ve components:

{ states(A), a (�nite or in�nite) set of states.
{ start(A) � states(A), a nonempty (�nite or in�nite) set of start states.

{ A mapping now from states(A) to R�0, the non-negative real numbers.
{ acts(A), a set of actions (or events), which include special time-passage actions
�(�t), where �t is a positive real number, and non-time-passage actions, classi�ed
as input and output actions.

{ steps(A) : states(A) � acts(A) ! states(A), a partial function that de�nes the
possible steps (i.e., transitions).

3

2.2 PVS

PVS (Prototype Veri�cation System) [19] is a speci�cation and veri�cation en-
vironment developed by SRI International's Computer Science Laboratory. In
contrast to other widely used proof systems, such as HOL [6] and the Boyer-
Moore theorem prover [4], PVS supports both a highly expressive speci�cation
language and an interactive theorem prover in which most low-level proof steps
are automated. The system provides a speci�cation language, a parser, a type
checker, and an interactive proof checker. The PVS speci�cation language is
based on a richly typed higher-order logic that permits a type checker to catch
a number of semantic errors in speci�cations. The PVS prover provides a set of
inference steps that can be used to reduce a proof goal to simpler subgoals that
can be discharged automatically by the primitive proof steps of the prover. The
primitive proof steps incorporate arithmetic and equality decision procedures,
automatic rewriting, and BDD-based boolean simpli�cation.

In addition to primitive proof steps, PVS supports more complex proof steps
called strategies, which can be invoked just like any other proof step in PVS.
Strategies may be de�ned using primitive proof steps, applicative Lisp code,
and other strategies, and may be built-in or user-de�ned.

2.3 A Template For Specifying Timed Automata in PVS

Our template for specifying Lynch-Vaandrager timed automata provides a stan-
dard organization for an automaton. To de�ne a timed automaton, the user
supplies the following six components:
{ declarations of the non-time actions,
{ a type for the \basic state" (usually a record type) representing the state variables,
{ any arbitrary state predicate that restricts the set of states (the default is true),
{ the preconditions for all transitions,
{ the e�ects of all transitions, and
{ the set of start states.

In addition, the user may optionally supply
{ declarations of important constants,
{ an axiom listing any relations assumed among the constants, and
{ any additional declarations or axioms desired.

To support mechanical reasoning about timed automata using proof steps that
mimic human proof steps, we also provide an appropriate set of PVS strategies,
based on a set of standard theories and certain template conventions. For exam-
ple, the induction strategy, which is used to prove state invariants, is based on
a standard automaton theory called machine. To reason about the arithmetic
of time, we have developed a special theory called time thy and an associated
simpli�cation strategy called TIME ETC SIMP for time values that can be
either non-negative real values or 1.

3 Specifying and Reasoning About Hybrid Automata

Like others, we use the term hybrid automaton to describe a state machine
which has both continuous and discrete components. Since hybrid automata are
used to model physical systems controlled by a discrete computer system, the
laws of physics a�ect their behavior. Because changes in measurable properties
of the physical systems depend on environmental factors, automata models of
these systems typically have some nondeterministic transitions. Thus, hybrid

4

automata di�er from deterministic, discrete automata in two major ways: their
behavior is nondeterministic and reasoning about their transitions often leads
to complex computations involving nonlinear real arithmetic.

Strictly speaking, the automata in our case study of the GRC problem [2] are
hybrid automata by the above de�nition. However, their description involved
neither nondeterminism nor nonlinear arithmetic. For the example in the current
case study, it was necessary to extend our previous methods to handle both of
these features.

3.1 Reasoning About Hybrid Automata

Handling Nondeterminism.To specify and to reason about nondeterministic
automata using an automated theorem prover, one needs to describe the nonde-
terministic transitions. An obvious approach is to represent the transitions as a
relation. In an initial experiment, we encoded the transitions in a deterministic
automaton from our initial study [2] as a relation and redid the proofs of state
invariants up to and including the Safety Property, the major theorem. Because
the selected timed automaton is deterministic, the transition relation was ex-
pressed as an equality between the result state and a case expression involving
the action and the initial state. The new versions of the state invariant proofs
were quite similar to the corresponding proofs in [2] , except for two important
di�erences. First, they took about twice as long to execute. Second, frequent hu-
man intervention was required to substitute the value of the result state where
it was needed. Human intervention was required even in the \trivial" branches
of induction proofs that our system previously handled automatically. Clearly,
this situation would only worsen in the case of true nondeterminism.

In the case of hybrid automata, not all transitions are nondeterministic, and
among those that are, not all parts of the state change nondeterministically. Our
ultimate solution, which took advantage of this fact, uses PVS's implementation
\epsilon" of Hilbert's choice operator � in expressing the transition relation as a
function. The choice operator � is de�ned as follows. Let P : � ! bool be any
predicate on a nonempty type � . Then �(P) has two known properties. First,
�(P) is an element of type � . Second, the �{axiom holds, namely: if there is an
element of type � that satis�es P , then P holds for �(P), i.e., P (�(P)) = true.

Two features of �(P) should be noted. First, it is always de�ned, whether
or not P can be satis�ed, and second, it is deterministic. These characteristics
need to be remembered when one is using � to reason about nondeterministic
automata. Reasoning about such automata using � is sound, provided 1) one
does not try to draw conclusions about existence of an action's result state
satisfying the speci�ed constraints from the fact that the action is de�ned, and
2) one does not draw conclusions about the equality of states reached by identical
action sequences. If such inferences are avoided, any speci�cation or proof errors
uncovered using � will be genuine errors.

A careful use of � that avoids these two dangers will simulate what we consider
to be a better solution: implement \ANY" and \SOME" quanti�ers in PVS that
can be skolemized and instantiated in fashions analogous to \FORALL" and
\EXISTS" in PVS. An \ANY" quanti�er would avoid at least problem 2), since
constants arising from its multiple skolemization could never be proved equal.
A solution to problem 1) is more di�cult in PVS, since PVS does not allow

5

hh

real_thy: THEORY
BEGIN

nonnegreal: TYPE = {r:real | 0 <= r};
% posreal_mult_closed: LEMMA (FORALL (x,y:real): (x > 0 & y > 0) => x*y > 0);

nonnegreal_mult_closed: LEMMA (FORALL (x,y:real): (x >= 0 & y >= 0) => x*y >= 0);
greater_eq_nonnegmult_closed: LEMMA (FORALL (x,y,z:real): (x >= 0 & y >= z) => x*y >= x*z);

END real_thy
hh

Fig. 1. A (Partial) Theory of Real Numbers

partial functions; \ANY" would have to behave more or less like � with respect
to de�nedness.

Handling Nonlinear Real Arithmetic. Computation in several of our
PVS proofs involved nonlinear real expressions. Existing PVS decision proce-
dures are able to handle some simple cases of such reasoning by expanding terms
into a normal form and matching identical terms. When the reasoning is more
complex, PVS needs help. Though it does not always happen, the simpli�cations
done by the PVS decision procedures can sometimes confuse the argument in
the proof. There are two approaches available to solve these problems. First, we
can provide PVS with a list of facts about real numbers. Second, we can name
subterms in a manner that prevents PVS from overdoing simpli�cation.

Providing support for convenient use of the second approach must await
planned enhancements to PVS. However, implementing the �rst approach is
more straightforward. We have added a line to our template that imports the
theory real thy, which contains useful standard de�nitions and lemmas about
real numbers. Figure 1 shows the subset of that theory that was helpful in com-
pleting the real arithmetic reasoning in the proofs in the current case study. We
note that, unlike [20], our goal is not to encode and use deep facts about real
analysis (such as the properties of integrals), since 1) these properties are well
understood, and 2) it is usually possible to isolate any application of them (and
the proof that it was done correctly) from the rest of the speci�cation correct-
ness proof. Instead, we aim to compile a list of facts that can eventually be used
automatically in an improved \real-arithmetic" PVS strategy.

3.2 The Steam Boiler Controller Problem

The Steam Boiler Controller problem, which is intended to provide a realistic
benchmark for comparing di�erent real-time formalisms, was de�ned by J.-R.
Abrial et al. in [1] and is derived from a competition problem previously posed
by Lt-Col. J.C. Bauer for the Institute for Risk Research at the University of
Waterloo in Canada. Below is the condensed and informal description of the
problem that appears in [12]:

The physical plant consists of a steam boiler. Conceptually, this boiler is
heated (e.g., by nuclear fuel) and the water in the boiler evaporates into steam
and escapes the boiler to drive, e.g., a generator (this part is of no concern
to the problem). The amount of heat and, therefore, the amount of steam
changes without any considered control. Nevertheless, the safety of the boiler
depends on a bounded water level (q) in the boiler and steam rate (v) at its
exit. A set of four equal pumps may supply water to compensate for the steam
that leaves the boiler. These four pumps can be activated or stopped by the
controller system. The controller reacts to the information of two sensors, the

6

water level sensor and the steam rate sensor, and both may fail. Moreover, the
controller can deduce from a pump monitor whether the pumps are working
correctly. Sensor data are transferred to the controller system periodically. The
controller reacts instantaneously with a new setting for the pumps (pr new)
or decides to shut down the boiler system (stop).

There are two basic time constants: First, the time between two consecutive
sensor readings (denoted I) and, second, the delay time (S) until the reaction of
the controller causes consequences in the boiler. The latter delay time usually
represents a worst case accumulation of sensor reading delay, calculation time
in the controller, message delivery time, reaction time of the pumps, and other
minor factors.

More precisely, the water level has two safety limits, one upper (denoted
M2) and one lower limit (denoted M1). If the water level reaches either limit,
there is just time enough to shut down the system before the probability
of a catastrophe gets unacceptably high. The steam rate has an upper limit
(denoted W) and, again, if this limit is reached the boiler must be stopped
immediately. In addition the human operator has the possibility to activate
the shutdown anytime.

Several automata are speci�ed in [12]: a boiler, a simple controller, the com-
bination of these into a combined system, and a combined system with a fault-
tolerant controller. Figure 2 presents, essentially verbatim, the speci�cation of
the simple combined system given in [12].2 In our study, we began by entering
the details of this speci�cation into our timed automaton template.

Figure 3 shows a fragment of our template's version of this speci�cation.
This fragment includes the de�nitions of two (parameterized) predicates
steam rate pred and water level pred (shown bold face for readability) that
capture the constraints on the new steam rate v0 and water level q0 in the e�ect
of the time passage action �(�t), together with the �(�t) part of the de�ni-
tion of the template's transition function trans that encodes the e�ects of the
actions de�ned in Figure 2. Appropriate applications of the � operator in a LET
construct allow the e�ect of the action �(�t) on state s to be expressed both
compactly and carefully.3 All the nondeterministic state components in either
the start state or in the transitions were similarly handled.

The major proof goal in [12] for the simple combined system was to establish
two properties: either the steam rate has an acceptable value or the system is in
the stop mode, and either the water level has an acceptable value or the system
is in the stop mode. These two properties are expressed formally in [12] as:

Theorem 1: In all reachable states of the boiler system, v <W or stop = true.

Theorem 2: In all reachable states of the boiler system, M1 < q <M2 or
stop = true.

Although neither property mentions time explicitly, the correctness of the
speci�cation with respect to these properties is established by proving a sequence
of state invariants that depend on time and thus relies heavily upon timing
restrictions.

2 The meanings of several of the constants and variables are found in the above problem
description. The Appendix de�nes the remaining constants and variables.

3 The LET construct allows � to be used in encoding the de�nition of any state in which
two nondeterministic components are related (as is the case in the start state|where
q and wl, which satisfy the same predicate, must be equal|as well as in the result
state of �(�t)) without the determinism of the � operator being taken for granted.

7

hh
State:

now, a nonnegative real, initially 0
do_sensor : boolean, initially true
do_output, stopmode, stop : boolean, initially false
pr, pr_new, pumps, px : [0 .. #pumps], initially 0
error : [0 .. pr_new], initially 0
v, read : nonnegative real, initially 0
set : nonnegative real, initially S
sr : [0,W], initially 0
q, wl : [0,C], initially equal and >> M1 and << M2

Transitions:
actuator(e_stop,pset) sensor(s,w,p)

Precondition: Precondition:
do_output = true now = read
pset = px do_sensor = true
e_stop = stopmode stop = false

Effect: w = q
do_output ′ = false s = v
do_sensor ′ = true p = pr
pr_new ′ = pset Effect:
stop ′ = e_stop pumps ′= p
read ′ = now + I do_sensor ′ = false

do_output ′ = true
controller sr ′ = s

Precondition: wl ′ = w
true

Effect: if sr ′ ≤ W − U1*I or
0 ≤ px ′ ≤ #pumps wl ′ ≥ M2−P*(pumps ′*S + (max_pumps_af ter_set)

*(I − S)) + min_steam_water (sr) or
νν(∆t) wl ′ ≤ M1−P*(pumps ′*S + (min_pumps_af ter_set)

Precondition: *(I − S)) + max_steam_water (sr)
stop = false then stopmode ′ = true
now + ∆t ≤ read else stopmode ′ = {true, false} arbitrary
now + ∆t ≤ set

Effect: activate
v − U2*∆t ≤ v ′ ≤ v + U1*∆t Precondition:
q + pr *P*∆t − δHIGH (v , v ′, ∆t) ≤ q ′ now = set
q ′ ≤ q + pr *P*∆t − δLOW (v , v ′, ∆t) stop = false
now ′ = now + ∆t Effect:

set ′ = read + S
0 ≤ error ′ ≤ pr_new
pr ′ = pr_new − error

hh

Fig. 2. Initial Speci�cation of the Boiler System

4 Results

Extensions Required to Previous Methods. Once the decision to model
nondeterminism using the Hilbert � was made, just two modi�cations to the
system used in our earlier study [2] were required before the system could be
applied to hybrid systems. First, some necessary lemmas about real arithmetic
were identi�ed and included in a new auxiliary theory real thy. The other major
modi�cation involved �: we developed a technique for using � in speci�cations
(illustrated in Figure 3) and in proofs (illustrated in Figure 6).

Errors Discovered. Using our proof system to analyze the Boiler, Controller,
and combined Boiler System speci�cations in [12] identi�ed approximately a

8

hh

steam_rate_pred(v_old:nonnegreal,delta_t:(fintime?))(v_new:nonnegreal):bool =
v_old − U_2*dur(delta_t) <= v_new & v_new <= v_old + U_1*dur(delta_t);

water_level_pred(q_old:water_level,pr:num_pumps,v_old,v_new:nonnegreal,delta_t:(fintime?))
(q_new:water_level):bool =

q_old + pr*P*dur(delta_t) − delta_HIGH(v_old,v_new,delta_t) <= q_new
& q_new <= q_old + pr*P*dur(delta_t) − delta_LOW(v_old,v_new,delta_t);

trans (a:actions, s:states):states =
CASES a OF
nu(delta_t): LET new_v_part = epsilon(steam_rate_pred(v(s),delta_t)),

new_q_part = epsilon(water_level_pred(q(s),pr(s),v(s),new_v_part,delta_t))
IN s WITH [now := now(s) + delta_t,

basic := basic(s) WITH [v_part := new_v_part, q_part := new_q_part]],
<... other action cases ...>

ENDCASES;
hh

Fig. 3. Specifying Nondeterminism Using �

dozen errors.4 These errors were discovered during each of the three basic stages
of the mechanization process: �lling in the template, applying the PVS type
checker, and checking the hand proofs of the invariants. The errors detected in
�lling in the template were usually due to vagueness in the original speci�cation.
For example, what is the meaning of the expressions \q << M2" and \q >>
M1"? How is the water level variable wl in the Controller assigned the value
of the actual water level q in the Boiler when the Controller is considered as a
separate automaton?

In checking the hand proofs, several types of errors were found. The most
common were missing assumptions about the constants. The second most com-
mon were simple typographical errors. All of these errors, as well as the errors
due to vagueness, are easily �xed. To correct them, we determined what changes
were needed to successfully complete the hand versions of the invariant proofs.
While trivial, detecting and correcting these easily �xable errors does clearly
lead to better speci�cations and better proofs.

Figure 4 shows an example of the type of feedback that occurs in the presence
of an error. It shows the encoding of invariant lemma 3.3 of [12], and the goal
of the sensor action proof branch generated by the induction strategy, with
the precondition in hypothesis f{4g expanded. The goal is in the form of a
PVS Gentzen-style sequent, where the conjunction of the hypotheses (numbered
negatively) must be shown to imply the disjunction of the conclusions (numbered
positively). Clearly, the proof on this branch would be valid if the inequality \sr 1
<= W { U 1 * I" in the condition in conclusion [2]|which is easily traceable to
the de�nition of the sensor action in Figure 2|were reversed. A little thought
shows that the �rst inequality in this de�nition is indeed backwards: one wants
to prevent the steam rate sr0 from becoming too large, not too small.

In addition to the minor errors described above, two more serious errors|
errors in reasoning|were discovered. How to correct these errors was not obvi-
ous. Like many of the minor errors, errors in reasoning were found when a dead

4 A complete description of these errors can be found in [3].

9

hhh

Inv_3_3(s: states):bool = (sr(s) + U_1*I < W) OR stopmode(s) = true;

lemma_3_3: LEMMA (FORALL (s:states): reachable(s) => Inv_3_3(s));
hhh
lemma_3_3.2 :

[−1] reachable(s_1)
[−2] (((sr_part(basic(s_1)) + U_1 * I) < W) OR stopmode_part(basic(s_1)))
[−3] enabled_general(sensor(sr_1, w_1, p_1), s_1)
{−4} now(s_1) = fintime(read(s_1)) AND do_sensor(s_1) AND w_1 = q(s_1) AND sr_1 = v(s_1)

AND p_1 = pr(s_1) AND NOT(stop(s_1))
|−−−−−−−
[1] (U_1 * I + sr_1 < W)
[2] IF (sr_1 <= W − U_1 * I

OR ((w_1 >= ((((max(0, sr_part(basic(s_1))*I − U_2*I/2*I) + M_2) − (I*P*num_pumps)) − P*S*p_1)
+ (P*S*num_pumps)))

OR (w_1 <= (M_1 + sr_part(basic(s_1))*I + U_1*I/2*I − P*S*p_1))))
THEN TRUE ELSE epsilon(bool_pred) ENDIF

hhh

Fig. 4. Feedback Example.

end was reached on some branch of an induction proof. But, unlike the minor
errors, making simple corrections to the speci�cations or to the statements of
the lemmas would not remedy the problems. In these cases, close examination of
the corresponding parts of the original hand proofs revealed errors in reasoning.

We note that the discovery of an error in the hand proof does not necessarily
mean that a given assertion is false. It merely means that the assertion does not
hold for the stated reasons. At least one invariant lemma in [12] (lemma 6) in
fact had a simpler PVS proof than the hand proof supplied. When assertions
hold for reasons other than the expected ones, one has to wonder whether the
speci�cation has in fact captured the required concepts.

Of the three modes of error discovery, the typechecking process produced
the most varied results. Remedying the error in one case required extending
the e�ect of an operator; in another, it required introducing a new invariant. A
third \error" was one uncovered by the typechecker during a proof via the TCC
(type-correctness condition) mechanism: when the �{axiom was invoked to assert
the corresponding predicate on the nondeterministic water-level component q0 of
the result state of the time passage action, a TCC was generated that required
proving that q0 belongs to the correct subrange of values, namely [0, C]. \Error"
is in quotes because this problem can be avoided by letting the water level range
over all real values.5 Provided that it can be established, Theorem 2 will then
show that the water level does in fact stay within the physical limits.

Time Required to Check the Boiler Controller. Checking the Boiler Con-
troller solution required the checking of 14 lemmas and 2 theorems. The entire
process of encoding three speci�cations and checking the proofs (with backtrack-
ing when corrections were made in the speci�cation or statements of the lemmas)
took less than 3 work weeks. Part of this time was spent designing and imple-
menting modi�cations to our system to support reasoning about nonlinear real
arithmetic and nondeterminism. In a few proofs, we did not complete the check

5 However, the Boiler automaton as speci�ed is then not a priori constrained in the
same way as the physical Boiler.

10

of the real arithmetic inequalities when this became too tedious in PVS and
when their validity became obvious.

When all went smoothly, checking the proof of an invariant required on av-
erage half an hour to an hour. Exceptions occurred in three induction proofs
involving signi�cant reasoning about complex inequalities. For these, our basic
induction strategy typically took between 10 and 15 minutes to reach the stage
where the user could continue the proof by completing the base case and action
cases, as opposed to times more on the order of 30 seconds for other induction
proofs of invariants.6 The reason for this ine�ciency is a question for further
study.

5 A Proof Example
Most of the invariant proofs in our case study are very similar to the corre-
sponding hand proofs. However, the PVS proofs required more detail when they
involved either nondeterminism or su�ciently complicated nonlinear arithmetic.
An example of a state invariant for the Boiler Controller speci�cation in Fig-
ure 2 that involves both reasoning about a nondeterministic action and nonlinear
arithmetic is Lemma 11 in [12]. Figure 5 provides the statement and hand proof
of Lemma 11 from [12]. Figure 6 shows the corresponding PVS proof using our
specialized strategies.

This is one case in which no special help was required to allow PVS to reason
about the real arithmetic: this aspect of the proof can be done by applying
equalities, expanding products, and matching the resulting terms, all of which
the primitive proof steps of PVS can do automatically.

On the other hand, PVS does need help at the point where the constraints on
the nondeterministic value v0, the steam rate in the result state, are introduced.
The step in the PVS proof which does this is the USE EPSILON step. The
e�ect of this step is to invoke the �{axiom for the (parameterized) predicate P =
steam rate pred(v(s 1), t 1) and the type � = nonnegreal, thus creating the
two proof branches represented by the cases \1" and \2" that follow this step.
In the �rst branch, the required constraints on v0 = �(P) have been introduced
into the hypotheses of the current goal. In the second branch, it is required to
prove that there does indeed exist a possible value for v0|that is, that there is
indeed a value of type nonnegreal satisfying P . This is done by supplying the
instance v(s 1). This branch is necessary because of the form of the �{axiom (see
Section 3.1).

6 Conclusions
Applying our proof system to a solution of the Steam Boiler Controller prob-
lem led to several insights about the utility of our approach to specifying and
verifying hybrid systems. We discuss these insights below.

Mechanizing Speci�cations and Proofs. The results of our study clearly
demonstrate the utility of mechanized tools for detecting and correcting errors
in both formal speci�cations and formal proofs. While veri�cation systems that
use totally automatic proof methods can provide some limited feedback, the
generality of interactive theorem proving provides more speci�c, and therefore
more useful, feedback. The feedback we obtained from the PVS typechecker and

6 These times are on a SPARCstation 20 running SunOS 5.4.

11

hh

Lemma 11: In all reachable states of the combined steam boiler system,

v + U1*(read − now) < W or stop = true

Proof. The basis is vacuously satisfied. We distinguish on the cases for the action a . For
a ∈ {sensor, activate} this lemma is trivially true. Otherwise we get:
A) a = actuator (v , stop , and now are unchanged):

We know sr + U1*I < W or stopmode = true (Lemma 3.3), do_output = true from the
precondition and if do_output then now = read and sr = v (Lemma 4). From this we
can infer v + U1*(now + I − now) < W or stopmode = true. Moreover, we get
stop ′ = e_stop = stopmode and read ′ = now + I from the effect and thus, we know
v + U1*(read ′ − now) < W or stop = true.

B) a = time-passage (read and stop are unchanged):
We know from the precondition stop = false and v + U1*(read − now) < W from the
assumption. This is equivalent to v + U1*(read − now − ∆t + ∆t) < W and it follows
v + U1*∆t + U1*(read − now − ∆t) < W. Since we know from the effect v ′ ≤ v + U1*∆t and
now ′ = now + ∆t , finally, this is equivalent to v ′ + U1*(read − now ′) < W. `

hh

Fig. 5. Hand Proof of Lemma 11
hh

Inv_11(s: states): bool = (v(s) + U_1*(read(s) − dur(now(s))) < W OR stop(s) = true);

lemma_11: LEMMA (FORALL (s: states): reachable(s) => Inv_11(s));

("" (AUTO_PROOF_BOILERSYS "Inv_11")
(("1" (APPLY (THEN (EXPAND "enabled_specific") (BOILERSYS_SIMP))

"Case nu(t_1)." "Invoke the precondition.")
(APPLY (THEN (USE_EPSILON "nonnegreal" "steam_rate_pred" "v(s_1)" "t_1") (BOILERSYS_SIMP))

"Invoke the restrictions on v ′.")
(("1" (TIME_ETC_SIMP))
("2" (APPLY (THEN (EXPAND "steam_rate_pred" 1) (BOILERSYS_SIMP))

"Doing the existence proof for epsilon.")
(APPLY (THEN (INST 1 "v(s_1)") (BOILERSYS_SIMP)))
(TIME_ETC_SIMP))))

("2" (APPLY (THEN (APPLY_INV_LEMMA "3_3") (BOILERSYS_SIMP))
"Case actuator(e_1,p_1).")

(APPLY (THEN (EXPAND "enabled_specific") (BOILERSYS_SIMP))
"Invoke the precondition.")

(APPLY (THEN (APPLY_INV_LEMMA "4") (BOILERSYS_SIMP))))))
hh

Fig. 6. PVS Proof of Lemma 11

from reaching dead ends in proofs not only localized the source of an error but
often made it easy for us to to correct the error. Moreover, the time required to
check the speci�cations and the proofs was not signi�cant.

Using Specialized Tools. We have applied the system that we developed for
our initial study [2] to two additional problems, the Boiler Controller bench-
mark and the proof of a timed version of Fischer's algorithm [13]. In each of the
later applications, our earlier-developed system greatly simpli�ed the speci�ca-
tion and proof process. Each new application of the system led to some additions:
the automata in Fischer's algorithm were a special class of timed automata that
represent MMT automata [17]; those in the current study involved nondetermin-
ism and nonlinear real arithmetic. However, the needed enhancements required
the addition of only a very small number of new proof strategies, sometimes with

12

speci�cation conventions to support them. The total time required for solving
each of the two later problems, which included the time needed to add the re-
quired enhancements, was less than three work weeks.

It is not clear when we will reach the point where applying our proof system
requires no additions. Our experience so far is that one can build upon the
previously developed system. Further, while we have not yet reached the point
where our system can be applied by users who lack knowledge of PVS, we believe
that use of our system reduces the time and e�ort that are required to check
proofs, while providing meaningful feedback about errors.

On Reasoning About Nondeterministic Automata. For e�cient reasoning
about nondeterministic automata in PVS, our current solution is to represent the
transition relation as a function by making (careful) use of the Hilbert �. We be-
lieve that incorporation of \ANY" and \SOME" constructs with accompanying
skolemization and instantiation would be useful additions to PVS for reasoning
about nondeterminism, since this would help solve the problem of the results of
actions being represented in PVS as deterministic (though nonspeci�c).

The desire to represent the transition relation as a function also partly arises
from the intuition that the intention in speci�cations such as the one in this
study is that transitions should be enabled when their preconditions are sat-
is�ed: that is, that they can then \�re". Thus, the transition relation should
be considered to be a many-valued (but never no-valued) function. Note, this
interpretation involves an implicit proof obligation for any such speci�cation:
one must demonstrate the existence of at least one result state satisfying the
constraints of every legal transition. We note that PVS naturally enforces this
requirement, since it demands that all functions be total.

On Using PVS. While there are no complete decision procedures for reason-
ing about inequalities involving nonlinear real arithmetic, our experience so far
indicates that the human guidance PVS is likely to need in reasoning about
hybrid automata is the application of a small number of facts about the real
numbers, together with control over the grouping of terms into factors. It should
be possible to design specialized PVS strategies that will provide much of the
needed guidance. These strategies fall into two categories: those that simplify ap-
plication of lemmas about real arithmetic, and what could be called \naming"
strategies, strategies that simplify the use of names for terms. The second type
can also be helpful in simplifying the job of the human user of PVS, since they
could also be used to manage expressions, such as epsilon expressions, that do
not necessarily involve a sum of terms, but are simply long. The implementation
of at least some of these strategies will require the use of certain enhancements
to PVS that are in progress, such as the ability to name and track assertions.
Whether strategies can be designed that execute with acceptable speed remains
an open question.

Acknowledgments

We wish to thank Gunter Leeb and Nancy Lynch for sharing a challenging exam-
ple with us; Steve Garland, Gunter Leeb, Victor Luchangco, and Nancy Lynch
for insightful discussions; and the anonymous reviewers for helpful comments.

13

References

1. J.-R. Abrial, E. Boerger, and H. Langmaack. Preliminary report for the Dagstuhl-
Seminar 9523: Methods for Semantics and Speci�cation. Dagstuhl, June 1995.

2. M. Archer and C. Heitmeyer. Mechanical veri�cation of timed automata: A
case study. In Proc. 1996 IEEE Real-Time Technology and Applications Symp.
(RTAS'96). IEEE Computer Society Press, 1996.

3. M. Archer and C. Heitmeyer. Verifying hybrid systems modeled as timed au-
tomata: A case study. Technical report, NRL, Wash., DC, 1997. In preparation.

4. R. Boyer and J. Moore. A Computational Logic. Academic Press, 1979.
5. S. Campos, E. Clarke, and M. Minea. Analysis of real-time systems using symbolic

techniques. In Formal Methods for Real-Time Computing, chapter 9. John Wiley
& Sons, 1996.

6. M. J. C. Gordon and T. Melham, editors. Introduction to HOL: A Theorem Prov-
ing Environment for Higher-Order Logic. Cambridge University Press, 1993.

7. C. Heitmeyer and N. Lynch. The Generalized Railroad Crossing: A case study in
formal veri�cation of real-time systems. In Proc., Real-Time Systems Symp., San
Juan, Puerto Rico, Dec. 1994.

8. C. Heitmeyer and N. Lynch. The Generalized Railroad Crossing: A case study in
formal veri�cation of real-time systems. Technical Report MIT/LCS/TM-51, Lab.
for Comp. Sci., MIT, Cambridge, MA, 1994. Also TR 7619, NRL, Wash., DC 1994.

9. C. Heitmeyer and D. Mandrioli, editors. Formal Methods for Real-Time Comput-
ing. Number 5 in Trends in Software. John Wiley & Sons, 1996.

10. T. Henzinger and P. Ho. Hytech: The Cornell Hybrid Technology Tool. Technical
report, Cornell University, 1995.

11. R. P. Kurshan. Computer-Aided Veri�cation of Coordinating Processes: the
Automata-Theoretic Approach. Princeton University Press, 1994.

12. G. Leeb and N. Lynch. Proving safety properties of the Steam Boiler Controller:
Formal methods for industrial applications: A case study. In J.-R. Abrial, et al.,
eds., Formal Methods for Industrial Applications: Specifying and Programming the
Steam Boiler Control, vol. 1165 of Lect. Notes in Comp. Sci. Springer-Verlag, 1996.

13. V. Luchangco. Using simulation techniques to prove timing properties. Master's
thesis, Massachusetts Institute of Technology, June 1995.

14. N. Lynch and F. Vaandrager. Forward and backward simulations { Part II:
Timing-based systems. To appear in Information and Computation.

15. N. Lynch and F. Vaandrager. Forward and backward simulations for timing-based
systems. In Proc. of REX Workshop \Real-Time: Theory in Practice", volume 600
of Lecture Notes in Computer Science, pages 397{446. Springer-Verlag, 1991.

16. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
17. M. Merritt, F. Modugno, and M. R. Tuttle. Time constrained automata. In J.

C. M. Baeten and J. F. Goote, eds., CONCUR'91: 2nd Intern. Conference on
Concurrency Theory, vol. 527 of Lect. Notes in Comp. Sci. Springer-Verlag, 1991.

18. S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal veri�cation for fault-
tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on
Software Engineering, 21(2):107{125, Feb. 1995.

19. N. Shankar, S. Owre, and J. Rushby. The PVS proof checker: A reference manual.
Technical report, Computer Science Lab., SRI Intl., Menlo Park, CA, 1993.

20. J. Vitt and J. Hooman. Assertional Speci�cation and Veri�cation Using PVS of
the Steam Boiler Control System. In J.-R. Abrial et al., editors, Formal Methods
for Industrial Applications: Specifying and Programming the Steam Boiler Control,
volume 1165 of Lect. Notes in Comp. Sci. Springer-Verlag, 1996.

14

A Appendix. Constant and Variable De�nitions

ii
Name Type Unit Descriptionii
I real, >0 s time between the periodical sensor readingii
S real, >0 s delay to activate pumps after the last sensor readingii
U1 real, >0 l /s 2 maximum gradient of the increase of the steam rateii
U2 real, >0 l /s 2 maximum gradient of the decrease of the steam rateii
M1 real, >0 l minimum amount of water before boiler becomes criticalii
M2 real, >0 l maximum amount of water before boiler becomes criticalii
W real, >0 l /s maximum steam rate before boiler becomes criticalii
P real, >0 l /s exact rate at which one active pump supplies water to the boilerii
#pumps int, >0 Number of pumps that can supply water to the boiler in parallelii
C real, >0 l Capacity of the boileriicc

c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 1. Constants for the Boiler and Controller Models

ii
Name Initial Type Values Unit Description

Value Rangeii
now 0 real [0, ∞) s current timeii
pr 0 integer {0, ..., #pumps} number of pumps actively supplying water to the boilerii
q >>M1, real [0, C] l actual water level in the boiler

<<M2ii
v 0 real [0, ∞) l /s steam rate of the steam currently leaving the boilerii
pr_new 0 integer {0, ... , #pumps} number of pumps that are supposed to supply water

after the activation delayii
error 0 integer {0, ... , pr_new } number of pumps that fail to supply water to the boiler

after activationii
do_sensor true boolean {true, false} enable a single sensor readingii
set S real [0, ∞) s next time the pumps change to the new settingsii
read 0 real [0, ∞) s next time the sensors will be readii
stop false boolean {true, false} flag whether emergency shut down is activatedii
do_output false boolean {true, false} flag that enables the output.

This represents a kind of program counter.ii
stopmode false boolean {true, false} flag to activate the shut downii
wl q real [0, C] l current water level readingii
sr 0 real [0, W] l /s current steam rate readingii
now 0 real [0, ∞) s current timeii
pumps 0 integer {0, ... , #pumps} number of currently active pumps suppling

water to the boilerii
px 0 integer {0, ... , #pumps} number of pumps that shall supply water nextiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2. Variables for the Boiler and Controller Models

iii
Name Type Unit Value Descriptionii
max_pumps_af ter_set integer #pumps maximum number of pumps that can supply water to the

boiler after the delay considering the pump failure model.iii
min_pumps_af ter_set integer 0 minimum number of pumps that can supply water to the

boiler after the delay considering the pump failure model.iii
max_steam_water (sr) real l max(0, (sr −U2*I/2)*I) minimum amount of water that can evaporate into steam

until the next sensor readingiii
min_steam_water (sr) real l (sr + U1*I/2)*I maximum amount of water that can evaporate into steam

until the next sensor readingiiic
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

Table 3. Additional De�nitions for the Controller Model

This article was processed using the LATEX macro package with LLNCS style

15

